Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543394

RESUMO

Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated. All authors focused on the application of plasmas sustained in fluorine or silicon-containing gases, particularly tetrafluoromethane, and hexamethyldisiloxane. The cellulose materials should be pre-treated with another plasma (typically oxygen) for better adhesion of the silicon-containing hydrophobic coating. In contrast, deposition of fluorine-containing coatings does not require pre-treatment, which is explained by mild etching of the cellulose upon treatment with F atoms and ions. The discrepancy between the results reported by different authors is explained by details in the gas phase and surface kinetics, including the heating of samples due to exothermic surface reactions, desorption of water vapor, competition between etching and deposition, the influence of plasma radiation, and formation of dusty plasma. Scientific and technological challenges are highlighted, and the directions for further research are provided.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144932

RESUMO

The development of durable multifunctional properties is crucial for the production of high-performance technical textiles. In this work, a novel, environmentally friendly and facile method was developed for the chemical modification of cotton fabric by in situ biosynthesis of Ag NPs in the presence of sumac leaf extract as a reducing agent on TiO2, ZnO and TiO2 + ZnO previously applied to cotton fibres. The results showed that the presence of TiO2, ZnO and TiO2 + ZnO significantly increased the concentrations of the synthesised Ag NPs on the cotton fibres compared to the one-component Ag coating. This resulted in excellent antimicrobial properties of the TiO2/Ag, ZnO/Ag and TiO2 + ZnO/Ag composites even after 25 washes. While the TiO2 and ZnO particles in the composite were incompatible, the synergistic effect among Ag, TiO2 and ZnO in the composites resulted in excellent UV blocking properties of the coatings before and after 25 washes. Since the biosynthesis of Ag NPs was accompanied by a yellow-brown colouration of the samples, the photocatalytic self-cleaning of the composite coating could not be determined from the photodegradation rate of the coffee stains. This research provides a new environmentally friendly approach to producing durable antimicrobial and UV blocking coatings on cotton fibres.

3.
Polymers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160437

RESUMO

The development of pH-responsive textile sensors has attracted much interest in recent decades. Therefore, the aim of this study was to show that screen printing could be one of the possible techniques for development of pH-responsive textile. Several parameters that could influence the pH sensitivity and responsivity of a screen-printed textile with bromocresol green dye were studied, such as textile substrate (cotton, polyamide), printing paste composition, and type of fixation (heat and steaming). The change in mechanical and physical properties of the printed fabrics was tested according to the valid ISO, EN, or ASTM standards. The responsiveness of the printed samples to different pH values with the change in colour was evaluated spectrophotometrically. In addition, the colour fastness of the printed textiles to rubbing, washing, and light was also investigated. The results show that the textile responsiveness to pH change was successfully developed by flat screen-printing technique, which proves that the printing process could be one of the methods for the application of indicator dye to textiles. The application of the printing paste to cotton and polyamide fabrics resulted in an expected change in the mechanical and physical properties of the fabrics studied. The responsiveness of printed fabrics to the change of pH value depends on the type of fibres, the strength of dye-fibre interactions, and the wettability of the fabric with buffer solutions. The colour fastness of the printed fabrics to dry and wet rubbing is excellent. Printed polyamide fabric is more resistant to washing than printed cotton fabric. Both printed fabrics have poor colour fastness to light.

4.
Materials (Basel) ; 14(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442994

RESUMO

This work presents the novel and entirely green in situ synthesis of zinc oxide nanoparticles (ZnO-NP) on cotton fabric. Pomegranate peel extract was used as a reducing agent and wood ash extract was used as an alkali source for the formation of ZnO-NP from zinc acetate. Four different synthesis methods, which varied in drying between immersion of fabric in the active solutions for synthesis and the use of padding and ultrasonication, were investigated to evaluate the most suitable one to achieve excellent ultraviolet (UV) protective properties of the functionalized textile. For comparison, the cotton fabrics were also functionalized with each active solution separately or in a combination of two (i.e., Zn-acetate and plant extract). Scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICP-MS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) analysis, and atomic force microscopy (AFM) confirm the successful formation of ZnO-NP on cotton. Among the synthesis methods, the method that included continuous drying of the samples between immersion in the active solutions for synthesis (Method 4) was found to be the most suitable to deliver uniformly impregnated cotton fibers with numerous small ZnO wurtzite structured crystals and excellent UV protection, with a UV protection factor of 154.0. This research presents an example of a green circular economy where a bio-waste material can be used to produce ZnO-NP directly on cotton at low temperatures and short treatment times without the addition of chemicals and enables the production of cellulosic fabrics with excellent UV protection.

5.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946418

RESUMO

An overview of recent work on the low-temperature plasma-assisted synthesis of zinc oxide (ZnO) nanoparticles is presented and interpreted in terms of gas-phase and surface reactions with illustrated examples. The thermodynamical nonequilibrium conditions allow the formation of chemically reactive species with a potential energy of several eV, which readily interact with the Zn precursors and initiate reactions leading to the formation of nanoparticles or nanowires. The high-quality nanowires were synthesized from Zn powders only upon interaction with moderately ionized plasma in a narrow range of plasma parameters. This technique is promising for the synthesis of large quantities of nanowires with aspect ratios well above 10, but the exact range of parameters remains to be determined. Apart from the ex situ techniques, the ZnO nanoparticles can be synthesized by depositing a film of precursors (often Zn salts or Zn-containing organometallic compounds) and exposing them to oxygen plasma. This technique is useful for the synthesis of well-adherent ZnO nanoparticles on heat-sensitive objects but requires further scientific validation as it often leads to the formation of a semicontinuous ZnO film rather than nanoparticles. Both low-pressure and atmospheric plasmas are useful in converting the precursor film into ZnO nanoparticles despite completely different mechanisms.

6.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260483

RESUMO

Defluorination of polytetrafluoroethylene (PTFE) surface film is a suitable technique for tailoring its surface properties. The influence of discharge parameters on the surface chemistry was investigated systematically using radio-frequency inductively coupled H2 plasma sustained in the E- and H-modes at various powers, pressures and treatment times. The surface finish was probed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The measurements of water contact angles (WCA) showed increased wettability of the pristine PTFE; however, they did not reveal remarkable modification in the surface chemistry of the samples treated at various discharge parameters. By contrast, the combination of XPS and ToF-SIMS, however, revealed important differences in the surface chemistry between the E- and H-modes. A well-expressed minimum in the fluorine to carbon ratio F/C as low as 0.2 was observed at the treatment time as short as 1 s when plasma was in the H-mode. More gradual surface chemistry was observed when plasma was in the E-mode, and the minimal achievable F/C ratio was about 0.6. The results were explained by the synergistic effects of hydrogen atoms and vacuum ultraviolet radiation.

7.
Polymers (Basel) ; 11(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766513

RESUMO

The weak photostability of photochromic dyes applied to textile substrates is one of the disadvantages of the broader use of photochromic dyes in the textile industry. Therefore, the influence of optical brightener concentration on both the photocoloration and photostability of cotton fabric coated with photochromic microcapsules using a pad-dry-cure process, as well as the physical-mechanical properties and colorfastness properties, were studied in this research. Coated samples were subjected to different tests according to valid EN ISO standards; namely mass per unit area, fabric stiffness, breaking force and elongation, air permeability, and different colorfastness properties (rubbing, domestic and commercial laundering, and light). Results showed that the coated fabric had higher mass per unit area, stiffness, breaking force and elongation and lower air permeability compared to uncoated fabric, irrespective of the padding bath composition. Coated fabric has better colorfastness to wet than dry rubbing. The colorfastness to washing decreases with the increased number of washing cycles. The use of optical brightener decreases the photocoloration of coated fabric and increases the photostability of coated fabric after the exposure of samples to a Xenotest apparatus for longer than 12 h.

8.
Acta Chim Slov ; 61(3): 587-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25286214

RESUMO

The influence of different application methods on UV protective properties of white and dyed cotton functionalized with ZnO nanoparticles (nano-ZnO) was investigated. The methods differ in application procedure, time of treatment and auxiliaries used in the treating bath. The ultraviolet protection factor (UPF) was determined for untreated and functionalized samples. The presence of nano-ZnO on fibres was investigated using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The content of Zn was determined with energy-dispersive X-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). Dynamic light scattering (DLS) was used for particle size measurements in the prepared solutions. The results show that UV protection of cotton increases with a higher content and uniform distribution of nano-ZnO on the samples and that dyeing increases the loading capacity of cotton towards nano-ZnO. One of the methods (Method IV) gave remarkable results giving cotton an excellent UV protection whether it was dyed or not.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...